Spectra of modular random graphs
نویسندگان
چکیده
Abstract We compute spectra of symmetric random matrices defined on graphs exhibiting a modular structure. Modules are initially introduced as fully connected sub-units of a graph. By contrast, inter-module connectivity is taken to be incomplete. Two different types of inter-module connectivities are considered, one where the number of intermodule connections per-node diverges, and one where this number remains finite in the infinite modulesize limit. In the first case, the results can be understood as a perturbation of a superposition of semicircular spectral densities one would obtain for uncoupled modules. In the second case, matters can be more involved, and depend in detail on inter-module connectivities. For suitable parameters we even find near-triangular-shaped spectral densities, similar to those observed in certain scale-free networks, in a system consisting of just two coupled modules. Analytic results are presented for the infinite module-size limit; they are well corroborated by numerical simulations.
منابع مشابه
Spectra of Modular and Small-World Matrices
Abstract We compute spectra of symmetric random matrices describing graphs with general modular structure and arbitrary interand intra-module degree distributions, subject only to the constraint of finite mean connectivities. We also evaluate spectra of a certain class of small-world matrices generated from random graphs by introducing shortcuts via additional random connectivity components. Bo...
متن کاملTHE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA
The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...
متن کاملCOSPECTRALITY MEASURES OF GRAPHS WITH AT MOST SIX VERTICES
Cospectrality of two graphs measures the differences between the ordered spectrum of these graphs in various ways. Actually, the origin of this concept came back to Richard Brualdi's problems that are proposed in cite{braldi}: Let $G_n$ and $G'_n$ be two nonisomorphic simple graphs on $n$ vertices with spectra$$lambda_1 geq lambda_2 geq cdots geq lambda_n ;;;text{and};;; lambda'_1 geq lambda'_2...
متن کاملSpectra of Some New Graph Operations and Some New Class of Integral Graphs
In this paper, we define duplication corona, duplication neighborhood corona and duplication edge corona of two graphs. We compute their adjacency spectrum, Laplacian spectrum and signless Laplacian. As an application, our results enable us to construct infinitely many pairs of cospectral graphs and also integral graphs.
متن کاملINTEGER-MAGIC SPECTRA OF CYCLE RELATED GRAPHS
For any h in N , a graph G = (V, E) is said to be h-magic if there exists a labeling l: E(G) to Z_{h}-{0} such that the induced vertex set labeling l^{+: V(G) to Z_{h}} defined by l^{+}(v)= Summation of l(uv)such that e=uvin in E(G) is a constant map. For a given graph G, the set of all for which G is h-magic is called the integer-magic spectrum of G and is denoted by IM(G). In this paper, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009